Stochastic Planning with First Order Decision Diagrams
نویسندگان
چکیده
Dynamic programming algorithms have been successfully applied to propositional stochastic planning problems by using compact representations, in particular algebraic decision diagrams, to capture domain dynamics and value functions. Work on symbolic dynamic programming lifted these ideas to first order logic using several representation schemes. Recent work introduced a first order variant of decision diagrams (FODD) and developed a value iteration algorithm for this representation. This paper develops several improvements to the FODD algorithm that make the approach practical. These include, new reduction operators that decrease the size of the representation, several speedup techniques, and techniques for value approximation. Incorporating these, the paper presents a planning system, FODD-PLANNER, for solving relational stochastic planning problems. The system is evaluated on several domains, including problems from the recent international planning competition, and shows competitive performance with top ranking systems. This is the first demonstration of feasibility of this approach and it shows that abstraction through compact representation is a promising approach to stochastic planning.
منابع مشابه
Probabilistic Relational Planning with First Order Decision Diagrams
Dynamic programming algorithms have been successfully applied to propositional stochastic planning problems by using compact representations, in particular algebraic decision diagrams, to capture domain dynamics and value functions. Work on symbolic dynamic programming lifted these ideas to first order logic using several representation schemes. Recent work introduced a first order variant of d...
متن کاملGeneralized First Order Decision Diagrams for First Order Markov Decision Processes
First order decision diagrams (FODD) were recently introduced as a compact knowledge representation expressing functions over relational structures. FODDs represent numerical functions that, when constrained to the Boolean range, use only existential quantification. Previous work developed a set of operations over FODDs, showed how they can be used to solve relational Markov decision processes ...
متن کاملDecision-theoretic planning with generalized first-order decision diagrams
Many tasks in AI require representation and manipulation of complex functions. First order decision diagrams (FODD) are a compact knowledge representation expressing functions over relational structures. They represent numerical functions that, when constrained to the Boolean range, use only existential quantification. Previous work has developed a set of operations for composition and for remo...
متن کاملSymbolic Stochastic Focused Dynamic Programming with Decision Diagrams
We present a stochastic planner based on Markov Decision Processes (MDPs) that participates to the probabilistic planning track of the 2006 International Planning Competition. The planner transforms the PPDDL problems into factored MDPs that are then solved with a structured modified value iteration algorithm based on the safest stochastic path computation from the initial states to the goal st...
متن کاملFirst Order Decision Diagrams for Decision Theoretic Planning
Compact representations of complex knowledge form the core of solutions to many problems in Artificial Intelligence. Sequential decision making under uncertainty is one such important problem and Decision Theoretic Planning (DTP) has been one of the most successful frameworks for this task. Recent advances in DTP have focused on generating efficient solutions for Relational Markov Decision Proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008